7,166 research outputs found

    Maximal Entanglement of Two-qubit States Constructed by Linearly Independent Coherent States

    Full text link
    In this paper, we find the necessary and sufficient condition for the maximal entanglement of the state, ψ>=μα>β>+λα>δ>+ργ>β>+νγ>δ>, |\psi>=\mu|\alpha>|\beta>+\lambda|\alpha>|\delta>+ \rho|\gamma>|\beta>+\nu|\gamma>|\delta>, constructed by linearly independent coherent states with \emph{real parameters} when ==. This is a further generalization of the classified nonorthogonal states discussed in Ref. Physics Letters A {\bf{291}}, 73-76 (2001).Comment: some examples added; Int J Theor Phys 201

    Magnetic Properties and Magnetocaloric Effect in Layered NdMn1.9Ti0.1Si2

    Get PDF
    The structural and magnetic properties of the NdMn1.9Ti0.1Si2 compund have been studied by high-intensity x-ray and high-resolution neutron powder diffraction, specific heat, dc magnetization, and differential scanning calorimetry measurements over the temperature range of 3-450 K. The Curie temperature and Néel temperature of layered NdMn1.9Ti0.1Si2 are indicated as TC ~ 22 K and TN ~ 374 K respectively. The first order magnetic transition from antiferromagnetic [AFil-type] to ferromagnetic [F(Nd)+Fmc] around TC is found in layered NdMn1.9Ti0.1Si2and is associated with large magnetocaloric effect. This behavior has been confirmed as a contribution of the magnetostructural coupling by using neutron and x-ray powder diffraction. The magnetic entropy change –ΔSM ~ 15.3 J kg-1 K-1 and adiabatic temperature change ΔTad ~ 4.7 K have been determined using magnetization and specific heat measurement under 0-5 T applied fields. This compound exhibits almost no thermal and magnetic hysteresis, thus potentially applicable in low temperature region for magnetic refrigerator material.Received: 31 December 2013; Revised:10 February 2014; Accepted: 24 February 201

    Connected Green function approach to ground state symmetry breaking in Φ1+14\Phi^4_{1+1}-theory

    Full text link
    Using the cluster expansions for n-point Green functions we derive a closed set of dynamical equations of motion for connected equal-time Green functions by neglecting all connected functions higher than 4th4^{th} order for the λΦ4\lambda \Phi^4-theory in 1+11+1 dimensions. We apply the equations to the investigation of spontaneous ground state symmetry breaking, i.e. to the evaluation of the effective potential at temperature T=0T=0. Within our momentum space discretization we obtain a second order phase transition (in agreement with the Simon-Griffith theorem) and a critical coupling of λcrit/4m2=2.446\lambda_{crit}/4m^2=2.446 as compared to a first order phase transition and λcrit/4m2=2.568\lambda_{crit}/4m^2=2.568 from the Gaussian effective potential approach.Comment: 25 Revtex pages, 5 figures available via fpt from the directory ugi-94-11 of [email protected] as one postscript file (there was a bug in our calculations, all numerical results and figures have changed significantly), ugi-94-1

    Analysis of the vector form factors fKπ+(Q2)f^+_{K\pi}(Q^2) and fKπ(Q2)f^-_{K\pi}(Q^2) with light-cone QCD sum rules

    Get PDF
    In this article, we calculate the vector form factors fKπ+(Q2)f^+_{K\pi}(Q^2) and fKπ(Q2)f^-_{K\pi}(Q^2) within the framework of the light-cone QCD sum rules approach. The numerical values of the fKπ+(Q2)f^+_{K\pi}(Q^2) are compatible with the existing theoretical calculations, the central value of the fKπ+(0)f^+_{K\pi}(0), fKπ+(0)=0.97f^+_{K\pi}(0)=0.97, is in excellent agreement with the values from the chiral perturbation theory and lattice QCD. The values of the fKπ(0)|f^-_{K\pi}(0)| are very large comparing with the theoretical calculations and experimental data, and can not give any reliable predictions. At large momentum transfers with Q2>5GeV2Q^2> 5GeV^2, the form factors fKπ+(Q2)f^+_{K\pi}(Q^2) and fKπ(Q2)|f^-_{K\pi}(Q^2)| can either take up the asymptotic behavior of 1Q2\frac{1}{Q^2} or decrease more quickly than 1Q2\frac{1}{Q^2}, more experimental data are needed to select the ideal sum rules.Comment: 22 pages, 16 figures, revised version, to appear in Eur. Phys. J.

    A New Cosmological Model of Quintessence and Dark Matter

    Full text link
    We propose a new class of quintessence models in which late times oscillations of a scalar field give rise to an effective equation of state which can be negative and hence drive the observed acceleration of the universe. Our ansatz provides a unified picture of quintessence and a new form of dark matter we call "Frustrated Cold Dark Matter" (FCDM). FCDM inhibits gravitational clustering on small scales and could provide a natural resolution to the core density problem for disc galaxy halos. Since the quintessence field rolls towards a small value, constraints on slow-roll quintessence models are safely circumvented in our model.Comment: Revised. Important new results added in response to referees comment

    Characterization of a wheat HSP70 gene and its expression in response to stripe rust infection and abiotic stresses

    Get PDF
    Members of the family of 70-kD heat shock proteins (HSP70 s) play various stress-protective roles in plants. In this study, a wheat HSP70 gene was isolated from a suppression subtractive hybridization (SSH) cDNA library of wheat leaves infected by Puccinia striiformis f. sp. tritici. The gene, that was designated as TaHSC70, was predicted to encode a protein of 690 amino acids, with a molecular mass of 73.54 KDa and a pI of 5.01. Further analysis revealed the presence of a conserved signature that is characteristic for HSP70s and phylogenetic analysis demonstrated that TaHSC70 is a homolog of chloroplast HSP70s. TaHSC70 mRNA was present in leaves of both green and etiolated wheat seedlings and in stems and roots. The transcript level in roots was approximately threefold less than in leaves but light–dark treatment did not charge TaHSC70 expression. Following heat shock of wheat seedlings at 40°C, TaHSC70 expression increased in leaves of etiolated seedlings but remained stable at the same level in green seedlings. In addition, TaHSC70 was differentially expressed during an incompatible and compatible interaction with wheat-stripe rust, and there was a transient increase in expression upon treatment with methyl jasmonate (MeJA) treatment. Salicylic acid (SA), ethylene (ET) and abscisic acid (ABA) treatments had no influence on TaHSC70 expression. These results suggest that TaHSC70 plays a role in stress-related responses, and in defense responses elicited by infection with stripe rust fungus and does so via a JA-dependent signal transduction pathway

    Superconductivity at 11.3 K induced by cobalt doping in CeOFeAs

    Full text link
    Pure phases of a new oxyarsenide superconductor of the nominal composition CeOFe0.9Co0.1As was successfully synthesized by solid state reaction in sealed silica ampoules at 1180 C. It crystallizes in the layered tetragonal ZrCuSiAs type structure (sp gp P4/nmm) with lattice parameter of a = 3.9918(5) angstrom and c = 8.603(1) angstrom. A sharp superconducting transition is observed at 11.31 K with an upper critical field of 45.22 T at ambient pressure. The superconducting transition temperature is drastically lowered (~ 4.5, 4.9 K) on increasing the concentration (x = 0.15, 0.2) of cobalt

    Superplastic behaviour of AZ91 magnesium alloy processed by high– pressure torsion

    No full text
    An investigation has been conducted on the tensile properties of a fine–grained AZ91 magnesium alloy processed at room temperature by high pressure torsion (HPT). Tensile testing was carried out at 423 K, 473 K and 573 K using strain rates from 1×10–1 s–1 to 1×10–4 s–1 for samples processed in HPT for N = 1, 3, 5 and 10 turns. After testing was completed, the microstructures were investigated by scanning electron microscopy and energy dispersive spectroscopy. The alloy processed at room temperature in HPT exhibited excellent superplastic behaviour with elongations higher than elongations reported previously for fine–grained AZ91 alloy produced by other severe plastic deformation processes, e.g. HPT, ECAP and EX–ECAP. A maximum elongation of 1308 % was achieved at a testing temperature of 573 K using a strain rate of 1×10–4 s–1, which is the highest value of elongation reported to date in this alloy. Excellent high–strain rate superplasticity (HSRSP) was achieved with maximum elongations of 590 % and 860 % at temperatures of 473 K and 573 K, respectively, using a strain rate of 1×10–2 s–1. The alloy exhibited low–temperature superplasticity (LTSP) with maximum elongations of 660 % and 760 % at a temperature of 423 K and using strain rates of 1×10–3 s–1 and 1×10–4 s–1, respectively. Grain–boundary sliding (GBS) was identified as the deformation mechanism during HSRSP, and the glide–dislocation creep accommodated by GBS dominated during LTSP. Grain–boundary sliding accommodated with diffusion creep was the deformation mechanism at high test temperature and slow strain rates. An enhanced thermal stability of the microstructure consisting of fine equiaxed grains during deformation at elevated temperature was attributed to the extremely fine grains produced in HPT at room temperature, a high volume fraction of nano ?–particles, and the formation of ?–phase filaments

    Scaling Behavior of Anomalous Hall Effect and Longitudinal Nonlinear Response in High-Tc Superconductors

    Full text link
    Based on existing theoretical model and by considering our longitudinal nonlinear response function, we derive a nonliear equation in which the mixed state Hall resistivity can be expressed as an analytical function of magnetic field, temperature and applied current. This equation enables one to compare quantitatively the experimental data with theoretical model. We also find some new scaling relations of the temperature and field dependency of Hall resistivity. The comparison between our theoretical curves and experimental data shows a fair agreement.Comment: 4 pages, 3 figure

    Continuous-variable quantum teleportation of entanglement

    Full text link
    Entangled coherent states can be used to determine the entanglement fidelity for a device that is designed to teleport coherent states. This entanglement fidelity is universal, in that the calculation is independent of the use of entangled coherent states and applies generally to the teleportation of entanglement using coherent states. The average fidelity is shown to be a poor indicator of the capability of teleporting entanglement; i.e., very high average fidelity for the quantum teleportation apparatus can still result in low entanglement fidelity for one mode of the two-mode entangled coherent state.Comment: 5 pages, 1 figure, published versio
    corecore